
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Translucid contracts: Expressive specification and
modular verification of aspect oriented interfaces
Mehdi Bagherzadeh
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bagherzadeh, Mehdi, "Translucid contracts: Expressive specification and modular verification of aspect oriented interfaces" (2011).
Graduate Theses and Dissertations. 10400.
https://lib.dr.iastate.edu/etd/10400

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10400?utm_source=lib.dr.iastate.edu%2Fetd%2F10400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Translucid contracts:

Expressive specification and modular verification of aspect oriented interfaces

by

Mehdi Bagherzadeh

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Hridesh Rajan, Major Professor

Vasant Honavar
Robyn R. Lutz

Samik Basu

Iowa State University

Ames, Iowa

2011

Copyright c©Mehdi Bagherzadeh, 2011. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my parents, Javad and Akram.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES . v

ACKNOWLEDGEMENTS . vii

CHAPTER 1. Introduction . 1

1.1 Density of Join Point Shadows . 1

1.2 Reasoning about Control Effects . 3

1.3 Contributions . 6

CHAPTER 2. Translucid Contracts . 7

2.1 Program Syntax . 7

2.2 Declarations . 7

2.3 Expressions . 8

2.4 Specification Features . 9

CHAPTER 3. Verification of Programs with Translucid Contracts 11

3.1 Overview of Key Ideas in Verification . 12

3.2 Checking Handler Refinement . 13

3.3 Example Handler Refinement . 14

3.4 Verifying Ptolemy Programs . 16

3.4.1 Verification of Regular Methods . 16

3.4.2 Verification of Handler Methods . 18

3.4.3 Translation Function . 18

3.4.4 Illustration of the Verification Algorithms . 19

3.4.5 Runtime Assertion Checking (RAC) . 20

www.manaraa.com

iv

CHAPTER 4. Analysis of Expressiveness . 22

4.1 Direct Interference: Augmentation . 22

4.2 Direct Interference: Narrowing . 23

4.3 Direct Interference: Replacement . 25

4.4 Direct Interference: Combination . 26

4.5 More Expressive Control Flow Properties . 27

CHAPTER 5. Applicability to Other AO Interfaces . 30

5.1 Translucid Contracts for XPIs and AAIs . 30

5.2 Translucid Contracts for Open Modules . 33

CHAPTER 6. Related Ideas . 35

6.1 Contracts for Aspects . 35

6.2 Modular Reasoning . 36

6.3 Grey Box Specification and Verification . 37

CHAPTER 7. Soundness of Reasoning . 38

7.1 Substitution Algorithm . 40

7.2 Proof of Soundness . 43

CHAPTER 8. Conclusion and Future Work . 47

BIBLIOGRAPHY . 48

www.manaraa.com

v

LIST OF FIGURES

Figure 1.1 A behavioral contract for aspect interfaces using Ptolemy [19] as the imple-

mentation language. See Section 2.1 for syntax. 2

Figure 1.2 A translucid contract for event type Changed 5

Figure 2.1 Ptolemy’s syntax [19], with refining expressions and contracts 8

Figure 2.2 Syntax for writing translucid contracts . 9

Figure 3.1 Rules for checking structural refinement . 14

Figure 3.2 Structural refinement relation (v) . 15

Figure 3.3 Handler refinement . 15

Figure 3.4 Translation algorithm. The algorithm for converting program expressions into

specification expressions that simulate running of handlers. 17

Figure 3.5 Translation of method setX . 20

Figure 3.6 Unrolling translation function . 20

Figure 3.7 Runtime assertion checking (RAC). Gray lines show pseudo code correspond-

ing to generated code by the compiler. 21

Figure 4.1 Specifying augmentation with a translucid contract 22

Figure 4.2 After-augmentation handler . 23

Figure 4.3 Specifying narrowing with a translucid contract 24

Figure 4.4 Narrowing handler . 24

Figure 4.5 Specifying replacement with a translucid contract 25

Figure 4.6 Replacement handler . 25

Figure 4.7 Combination contract and handler . 27

www.manaraa.com

vi

Figure 4.8 Expressive control flow properties beyond [24] 28

Figure 5.1 Applying translucid contract to an XPI . 30

Figure 5.2 Narrowing advice for XPI . 31

Figure 5.3 Applying translucid contract to an AAI . 32

Figure 5.4 Applying translucid contract to Open Modules 33

Figure 5.5 Narrowing handler for Open Module . 34

Figure 7.1 Alternative operational semantics of Ptolemy[20] 40

Figure 7.2 Classes to simulate list of active objets . 42

Figure 7.3 Substitution algorithm . 43

Figure 7.4 Auxiliary functions of substitution algorithm 44

Figure 7.5 Structural similarity of translation and substitution of announce and invoke

expressions . 46

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I like to take this opportunity to thank those who helped me through research and writing phases of

this thesis. I like to thank Dr. Hridesh Rajan, my advisor, for the extraordinary role he has played in

shaping my research interests. I also like to thank, Dr. Gary T. Leavens for the friendly cooperation he

has always offered me. My thanks also goes to Sean L. Mooney which developed Ptolemy compiler,

used to showcase the feasibility of the proposed ideas in this thesis. I also like to thank my committee

members Dr. Vasant Honavar, Dr. Robyn R. Lutz and Dr. Samik Basu for their productive suggestions

to improve the quality of this work.

Discussions with Dr. Gary T. Leavens, Dr. Eli Tilevich, Dr. Jonathan Aldrich and Dr. Kathryn

McKinley, committee members of doctoral symposium of OOPSLA/SPLASH ’10 conference (Sys-

tems, Programming, Languages, and Applications: Software for Humanity 2010), were of great help.

Additionally, I like to thank the anonymous reviewers of AOSD ’11 conference (Aspect Oriented Soft-

ware Development 2011) and FOAL ’10 workshop (Foundations of Aspect-Oriented Languages) for

their detailed, insightful feedbacks about the current work. My thanks also goes to members of Labo-

ratory for Software Design. Finally research work presented in this thesis has been made possible by

the generous financial support of NSF (National Science Foundation) for the Ptolemy project.

www.manaraa.com

1

CHAPTER 1. Introduction

Reasoning about aspect-oriented (AO) programs that use pointcuts and dynamic advice, as found

in AspectJ programs, often seems difficult, due to two fundamental problems:

1. Join point shadows, i.e., places in the code where advice may apply, occur very frequently 1 And

at each join point shadow, reasoning must take into account the effects of all applicable advice.

2. The control effects of advice must be understood in order to reason about a program’s control

flow and how advice might interfere with the execution of other advice.

1.1 Density of Join Point Shadows

As an example of the first problem, consider the straight-line code in below. In this listing, assuming

that x and y are fields, there are at least 8 join point shadows, including the 5 method calls, the writes

of x and y, and the read of x.

1 x = o1.m1(a.e1(), b.e2());

2 y = o2.m2(c.e3(), x);

Knowing what advice applies where is amenable to tool support. An example is the Eclipse AspectJ

Development Tools (AJDT). The idea of aspect-aware interfaces [13], is equivalent to such tool support.

However, the number of reasoning tasks grows with the number of join points and the amount of

applicable advice.

One way of avoiding this problem of frequent occurrence of join point shadows, is to limit where

advice may apply, for example, by using some form of explicit base-advice interface (AO interface),

e.g. crosscutting interfaces (XPIs), open modules, etc, [1, 6, 19, 27, 28]. This is the approach we adopt
1For example, a join point shadow occurs at each method or constructor call, and each field read and write.

www.manaraa.com

2

1 class Fig { }

2 class Point extends Fig {

3 int x, y;

4 Fig setX(int x){

5 announce Changed(this){

6 this.x = x; this

7 }

8 }

9 }

5

6

Event

Announcement

A
O

 i
n

te
rf

a
ce

 (
E

v
e

n
t

T
y

p
e

) 10 Fig event Changed {

11 Fig fe;

12 requires fe != null

13 .

14 .

15 .

16 .

17 ensures fe != null

18 }

Fig fe;

requires fe != null

.

.

.

.

ensures fe != null

Event

Declaration

19 class Update {

20 Update init(){ register(this)}

21 Fig update(thunk Fig rest, Fig fe){

22 invoke(rest);

23 .

24 Display.update(fe); fe

25 .

26 }

27 when Changed do update;

28 }

27 when

Quantification

Update init(){

thunk

); fe

update;

Registration

Black Box

Contract

Figure 1.1 A behavioral contract for aspect interfaces using Ptolemy [19] as the
implementation language. See Section 2.1 for syntax.

in this thesis by using the language Ptolemy [19]. Ptolemy introduces the notion of event types and

limits the join points to explicit event announcements.

To illustrate, consider the Ptolemy code in Figure 1.1 from the canonical drawing editor example

with functionalities to draw points, lines and update the display. In Ptolemy, events are explicitly an-

nounced, which mitigates the first problem, as reasoning about events only needs to happen at program

points where events are explicitly announced (such as lines 5–7). Ptolemy programs declare event

types, which are abstractions over concrete events in the program. Lines 10–18 declare an event type

that is an abstraction over program events that cause change in a figure. An event type declaration

may declare variables that make some context available. For example, on line 11, the changing figure,

named fe, is made available. Concrete events of this type are explicitly and declaratively created using

announce expressions as shown on lines 5–7. Like Eos [21, 22], Ptolemy doesn’t distinguish be-

tween aspects and classes. On lines 19–28 is the Ptolemy’s equivalent of an AspectJ-like advice, which

advises calls to the method setX. The Update class has a binding declaration on line 27 that says to

run the handler method update whenever events of type Changed are signaled. In Ptolemy’s termi-

nology advice are called handlers. Ptolemy also provides dynamic registration using register, line

20, which activates the current instance of the Update class as an observer for the event Changed.

www.manaraa.com

3

1.2 Reasoning about Control Effects

As an example of the second problem, understanding control effects of the advice, consider the

Logging handler in the listing below that advises the same set of events advised by Update handler

in Figure 1.1. To understand the control flow at these events matched by these handlers a developer

must understand the control flow of both handlers. Furthermore, to understand the behavior at such

events one must also understand the control flow of all other handlers that may advise the same events.

29 class Logging{

30 …

31 Fig log(thunk Fig rest, Fig fe){

32 invoke(rest);

33 Log.logChanges(fe); fe

34 }

35 when Changed do log;

36 }

Design by contract (DBC) methodologies for aspect-oriented software development (AOSD) have

been explored before [12, 28, 31], however, existing work relies on black box behavioral contracts.

Such behavioral contracts specify, for each of the aspect’s advice methods, the relationships between

its inputs and outputs, and treat the implementation of the aspect as a black box, hiding all the aspect’s

internal states. As shown in Figure 1.1, event type Changed declares a black box contract on lines

12–17. Phrases “behavioral” and “black box” contract are used interchangeably throughout the thesis.

However, the black box contract on lines 12–17 does not specify the control effects of the handler.

2 For example, with just the black box contract of the event type Changed given, one cannot determine

whether a call such as p.setX(3) will proceed to execute the body of setX, and thus whether such

a call will always set the current x coordinate of p to its argument (3). If the expression invoke in the

handler method update is forgotten inadvertently, the execution of the body of method setX will be

skipped. This is equivalent to missing the call to proceed in an advice in AspectJ. Such assertions are

important for reasoning, which depends on understanding the effect of composing the handler modules

with the base code [24, 28]. That is, the contract does not specify if the handler must always proceed.

Ideas from Zhao and Rinard’s Pipa language [31], if applied to AO interfaces help to some extent.

But, as discussed in Chapter 6, Pipa’s expressiveness beyond simple control flow properties is limited.
2This limitation of black box behavioral specifications was discussed in a preliminary version of this work [2].

www.manaraa.com

4

Even if programmers don’t use formal techniques to reason about their programs, contracts for

AO interfaces can serve as the programming guidelines for imposing design rules [28]. But black

box contracts for AO interfaces yield insufficiently specified design rules that leave too much room

for interpretation, which may differ significantly from programmer to programmer. This may cause

inadvertent inconsistencies in AO program designs and implementations, leading to hard to find errors.

Another problem with such black box contracts is that they do not help with effectively reason-

ing about the effects of aspects on each other. Consider another example concern, say Logging,

which writes a log file at the events specified by Changed. For this concern different orders of

composition with the Update concern in Figure 1.1 could lead to different results. (In AspectJ

declare precedence can be used to enforce an ordering on aspects and the application of their

advice.) Suppose line 22 of Figure 1.1 was omitted; that is, suppose that Update handler did not

proceed. In that case, if Update were to run first, followed by Logging, then the evaluation of

Logging would be skipped. Conversely, Logging would work (i.e., it would write the log file) if

the handlers were composed in the opposite order. A handler developer cannot, by just looking at the

black box contract of the event type, reason about the composition of such handlers. Rather a developer

must be aware of the control effects of the code in all composed handlers. Furthermore, if any of these

handlers changes (i.e., if their control effects change), one must reason about every other handler that

applies at the same events.

The main contribution of this work is the notion of translucid contracts for AO interfaces, which

is based on grey box specification [5]. A translucid contract for an AO interface can be thought of as

an abstract algorithm describing the behavior of aspects that apply to that AO interface. The algorithm

is abstract in the sense that it may suppress many actual implementation details, only specifying their

effects using specification expressions. This allows the specifier to decide to hide some details, while

revealing others. As in the refinement calculus, code satisfies an abstract algorithm specification if the

code refines the specification [15], but we use a restricted form of refinement that requires structural

similarity, to allow specification of control effects.

www.manaraa.com

5

10 Fig event Changed {

11 …

12 requires fe != null

13 assumes{

14 invoke(next);

15 establishes fe==old(fe)

16 }

17 ensures fe != null

18 }

requires fe != null

assumes{

14 invoke(next);

15 establishes fe==old(fe)

16 }

ensures fe != null

19 class Update {

20 …

21 Fig update(thunk Fig rest, Fig fe){

22 invoke(rest);

23 refining establishes fe==old(fe){

24 Display.update(fe); fe

25 }

26 }

27 …

28 }

null

fe==old(fe)

Translucid

Contract

Figure 1.2 A translucid contract for event type Changed

We have added an example translucid contract to the AO interface, event type Changed, on lines

12–17 of Figure 1.2. Unlike a black box behavioral contract, internal states of the handler methods

(which correspond to advice) that run when the event Changed is announced (this corresponds to

a join point occurrence) are exposed in the translucid contract. In particular, any occurrence of the

invoke expression (which is like AspectJ’s proceed) in the handler method must be made explicit in

the translucid contract, line 14.3 This in turn allows the developer of the class Point that announces

the event Changed to understand the control effects of the handler methods by just inspecting the

specification of Changed. For example, from line 14 one may conclude that, irrespective of the

concrete handler methods, the body for the method setX on line 6 of Figure 1.1 will always be run.

Such conclusions allow a client of the setX to make more expressive assertions about its control

flow without considering every handler method that may potentially run when the event Changed is

announced. Expression next is a specification placeholder for the event closure passed to the handlers.

Requiring the invoke expression to be made explicit also benefits other handlers that may run

when the event Changed is announced. For example, consider the logging concern discussed earlier.

Since the contract of Changed describes the control flow effects of the handlers, reasoning about the

composition of the handler method for logging and other handlers becomes possible without knowing
3next is a specification placeholder for the event closure passed to the handlers.

www.manaraa.com

6

about all explicit handlers that may run when Changed is announced. In this thesis we explicitly focus

on the use of translucid contracts for describing and reasoning about control flow effects.

To soundly reap these benefits, the translucid contract for the event type Changed must be refined

by each conforming handler method [15]. We borrow the idea of structural refinement from JML’s

model programs [25] and enhance it to support AO interfaces, which requires several adaptations that

we discuss in Chapter 3. Briefly the handler method update on lines 22–25 in Figure 1.2 refines the

contract on lines 12–17 because line 22 matches line 14 and lines 23–25 claim to refine the specification

expression on line 15. The pre- and postconditions of update are considered the same as the pre- and

postconditions of event type specification on lines 12 and 17, respectively.

1.3 Contributions

In summary, this work makes the following contributions:

• A specification and verification technique for writing contracts for AO interfaces and a proof of

the soundness of the presented specification, verification and reasoning approach;

• An implementation of the proposed specification and verification technique in the Ptolemy’s

compiler [18];

• An analysis of the effectiveness of our contracts using Rinard et al.’s work [24] on aspect clas-

sification which shows our technique works well for specifying all classes of aspects (as well as

others that Rinard et al. do not classify);

• A demonstration that besides the AO interface proposal by the previous work of Rajan and Leav-

ens [19], our technique works quite well for crosscutting interfaces [28] Aldrich’s open mod-

ules [1], and Kiczales and Mezini’s aspect-aware interface [13]. We also discuss the applicabil-

ity of our technique to other languages that similarly solve the first reasoning problem by having

explicit announcement, including Steimann et al.’s join point types [27], Hoffman and Eugster’s

explicit join points [9]; and

• A comparison and contrast of our specification and verification approach with related ideas for

AO contracts.

www.manaraa.com

7

CHAPTER 2. Translucid Contracts

In this chapter, we describe our notion of translucid contracts and present a syntax to state these

contracts. We use our previous work on the Ptolemy language [19] for this discussion. 1 However, as

we show in Chapter 5 our basic ideas are applicable to other aspect-oriented programming models. We

first present Ptolemy’s programming features and then describe its specification features.

2.1 Program Syntax

Ptolemy is an object-oriented (OO) language with support for declaring, announcing, and register-

ing with events much like implicit-invocation (II) languages. The registration in Ptolemy is, however,

much more powerful compared to II languages as it allows developers to quantify over all subjects that

announce an event without actually naming them. This is similar to “quantification” in aspect-oriented

languages such as AspectJ. The formally defined OO subset of Ptolemy has classes, objects, inheri-

tance, and subtyping, but it does not have super, interfaces, exception handling, built-in value types,

privacy modifiers, or abstract methods.

The syntax of Ptolemy executable programs is shown in Figure 2.1 and explained below. A Ptolemy

program consists of zero or more declarations, and a “main” expression (see Figure 1.1 and Figure 1.2).

Declarations are either class declarations or event type declarations.

2.2 Declarations

We do not allow nesting of decls. A class has a name (c) and names its superclass (d), and may

declare fields (field) and methods (meth). Field declarations are written with a class name, giving
1Descriptions of Ptolemy’s syntax and semantics are adapted from our previous work [19].

www.manaraa.com

8

prog ::= decl e
decl ::= class c extends d { field meth binding }

| t event p { form contract }
field ::= t f;
meth ::= t m (form) { e } | t m (thunk t var, form) { e }
form ::= t var, where var 6=this and var 6=next
binding ::= when p do m
e ::= n | var | null | new c() | e.m(e) | e.f | e.f = e | form = e; e

| if (ep) { e } else { e } | while (ep) { e } | cast c e | e; e
| register(e) | invoke (e) | announce p (e) { e }
| refining spec { e }

ep ::= n | var | ep.f | ep != null | ep == n | ep < n | ! ep | ep && ep

where

n ∈ N , the set of numeric, integer literals
c, d ∈ C, a set of class names
t ∈ C ∪ {int}, a set of types
p ∈ P, a set of event type names
f ∈ F , a set of field names
m ∈ M, a set of method names
var ∈ {this,next } ∪ V,V is a set of variable names

Figure 2.1 Ptolemy’s syntax [19], with refining expressions and contracts

the field’s type, followed by a field name. Method headers have a C++ or Java-like syntax, although

their body is an expression. A binding declaration associates a set of events, described by an event

type (p), to a method (m) [19]. An example is shown in Figure 1.2, which contains a binding on line

27. This binding declaration tells Ptolemy to run method update when events of type Changed are

announced. II terminology calls such methods handler methods.

An event type (event) declaration has a return type (t), a name (p), zero or more context vari-

able declarations (form), and a translucid contract (contract). These context declarations specify the

types and names of reflective information exposed by conforming events [19]. An example is given in

Figure 1.2 on lines 10–18. In writing examples of event types, as in Figure 1.2, we show each formal

parameter declaration (form) as terminated by a semicolon (;). In examples showing the declarations

of methods and bindings, we use commas to separate each form.

2.3 Expressions

The formal definition of Ptolemy is given as an expression language [19]. It includes several stan-

dard object-oriented (OO) expressions and also some expressions that are specific to announcing events

and registering handlers. The standard OO expressions include object construction (new c()), vari-

able dereference (var, including this), field dereference (e.f), null, cast (cast t e), assignment to

a field (e1.f = e2), a definition block (t var = e1; e2), and sequencing (e1; e2). Their semantics and

typing is fairly standard [6, 19] and we encourage the reader to consult [19].

www.manaraa.com

9

There are also three expressions pertinent to events: register, announce, and invoke. The

expression register(e) evaluates e to an object o, registers o by putting it into the list of active

objects, and returns o. Only active objects in this list are capable of advising events. For example

line 20 of Figure 1.2 is a method that, when called, will register the method’s receiver (this). The

expression announce p (ē) {e} declares the expression e as an event of type p and runs any handler

methods of registered objects (i.e., those in the list of active objects) that are applicable to p [19]. The

expression invoke(e) is similar to AspectJ’s proceed. It evaluates e, which must denote an event

closure, and runs that event closure. This results in running the next handler method in the chain of

applicable handlers in the event closure. If there are no remaining handler methods, it runs the original

expression from the event. The type thunk t ensures that the value of the corresponding actual

parameter is an event closure with return type t, and hence t is the type returned by invoke(e).

When called in an event, or by invoke, each handler method is called with a registered object

as its receiver. The call passes an event closure as the first actual argument to the handler (rest in

Figure 1.2 line 21). Event closures are never stored; they are only constructed by the semantics and

passed to the handler methods.

There is one additional program expression: refining. A refining expression, of the form

refining spec { e }, is used to implement Ptolemy’s translucid contracts (see below). It executes

the expression e, which is supposed to satisfy the contract spec.

2.4 Specification Features

The syntax for writing an event type’s contract in Ptolemy is shown in Figure 2.2. In this figure, all

non-terminals that are used but not defined are the same as in Figure 2.1.

contract ::= requires sp assumes { se } ensures sp
spec ::= requires sp ensures sp
sp ::= n | var | sp.f | sp != null | sp == n | sp < n| ! sp

| sp == old(sp) | sp && sp

se ::= sp | spec | null | new c() | se.m(se) | se.f | se.f = se| form = se; se
| if (sp) { se } else { se }| while (sp) { se } | cast c se | se; se
| register(se) | invoke (se) | announce p (se) { se }
|refining spec { se } | next | either { se } or { se }

Figure 2.2 Syntax for writing translucid contracts

www.manaraa.com

10

A contract is of the form requires sp1 assumes { se } ensures sp2. Here, sp1 and sp2 are

specification predicates as defined in Figure 2.2 and the body of the contract se is an expression that

allows some extra specification-only constructs (such as the choice construct either seT or seF).

In an event specification, the predicate sp1 is the precondition for event announcement, and sp2 is the

postcondition of the event announcement. The specification expression se is the abstract algorithm

describing conforming handler methods. The invoke expressions must be revealed in se and the

variables that could be named in se are only context variables. If a method runs when an event of type

p is announced, then its implementation must refine the contract se of the event type p. For example, in

Figure 1.2, method update, lines 21–26 must refine the contract of the event Changed, lines 12–17.

There are four new expression forms that only appear in contracts: specification expressions, next

expressions, abstract invoke expressions, and choice expressions. A specification expression (spec)

hides implementation details (i.e., algorithms) and thus abstracts from a piece of code in a conform-

ing implementation [23, 25]. The most general form of specification expression is requires sp1

ensures sp2, where sp1 is a precondition expression and sp2 is a postcondition. Such a specification

expression hides program details by specifying that a correct implementation contains a refining

expression whose body expression, when started in a state that satisfies sp1, will terminate in a state

that satisfies sp2 [23, 25]. In examples we use the following syntactic sugars: preserves sp for

requires sp ensures sp, and establishes sp for requires 1 ensures sp [23]. Ptolemy

uses 0 for “false” and non-zero numbers, such as 1, for “true” in conditionals.

The next expression, the invoke expression and the choice expression (either − or) are

placeholders in the specification that express the event closure passed to a handler, the call of an event

handler using invoke, and a conditional expression in a conforming handler method, respectively.

The choice expression hides the implementation details and thus abstracts from the concrete condition

check in the handler method. For a choice expression either { se1 } or { se2 } a conforming han-

dler may contain an expression e1 that refines se1, or an expression e2 that refines se2, or an expression

if (e0) { e1 } else { e2 }, where e0 is a side-effect free expression, e1 refines se1, and e2 refines

se2. Choice expression allows variability in handlers’ behaviors and enables their abstraction.

www.manaraa.com

11

CHAPTER 3. Verification of Programs with Translucid Contracts

Verifying Ptolemy programs is different from standard object-oriented (OO) programs in two ways.

First, a method in the program under verification may announce events that can cause a set of handlers

to run. (In AspectJ, this is equivalent to invoking a set of advice at a join point.) Second, if the method is

a handler it may call invoke that can also cause a set of handlers to run. (In AspectJ, this is equivalent

to an advice calling proceed that can cause other advice to run.)

Therefore, verifying a Ptolemy program with translucid contracts poses two novel technical prob-

lems, compared to verifying standard OO programs: (1) verifying that each handler method correctly

refines the contract of each event type it handles, and (2) verifying code containing announce and

invoke expressions.

A handler method is a method that is statically declared in a binding form in its class to handle

events of a given event type. When a binding of the form when p dom appears in a class declaration,

then m is a handler method for event type p; an example handler method is update in Figure 1.2.

The main novelty of translucid contracts is that both of these verification steps can be carried out

modularly. By “modularly” we mean that each task can be done using only the code in question, the

specifications of static types mentioned in the code, and the specifications of the relevant event types.

For a handler, the relevant event types are all the event types that the method is a handler for (as

determined by the binding declarations in the class where the handler is declared). For an announce

expression, the relevant event type is the one that is being announced. For an invoke expression,

which must occur inside a handler method body, it is each event type that the method is a handler for.

www.manaraa.com

12

3.1 Overview of Key Ideas in Verification

Informally, to verify that each handler method correctly refines the contract of each event type

that it handles, we first statically check whether the structure of the handler method body matches the

structure of the assumes block of the event type. Note that invoke expressions that can override

the underlying event body’s execution (join point in AO terms) can only appear inside the handler

method. So this check ensures that the control effects of the handler method matches the control effects

specified in the translucid contract. At the same time, in our current implementation, we insert runtime

assertions that check that the pre- and postconditions required by each event type’s contract are satisfied

by the handler method. These two checks ensure that starting with a state that satisfies the event type’s

precondition, if a correct handler method is run, it can only terminate in a state that satisfies the event

type’s postcondition, while ensuring that it produces no more control effects than those mentioned in

the event type’s assumes block.

Recall that an announce expression may cause a statically unknown number of handler methods

to run, potentially followed by the event body. (In AspectJ terms, this is equivalent to running unknown

number of pieces of advice, potentially followed by the original join point code.) An invoke expres-

sion (proceed) works similarly. To verify the code containing an announce expression, we take

advantage of the fact that each correct handler method refines the event type’s contract. So the event

type’s contract can be taken as a sound specification of the behavior of each handler. What is interesting

and novel about our proposal is that the assumes block for an event type’s translucid contract gives a

sound specification of the behavior of an arbitrary number of handlers for that event.

Ignoring concrete details, imagine we need a sound specification of the behavior of the two handlers

Update and Logging for the event type Changed in Figure 1.2. This can be constructed by taking

the assumes block of this event type’s contract and replacing occurrences of all invoke expressions

inside it by the same assumes block (we will discuss how to do this shortly). This essentially achieves

the effect of inlining the invoke expression (and is similar to unrolling a loop or inlining a recursive

call [7]). Notice that construction of this specification only requires access to the event type. Also

note that the resulting specification may contain some invoke expressions (as a result of inlining the

assumes block). Let us call the constructed specification S.

www.manaraa.com

13

Given the specification S of the behavior of the two handlers, we can now (1) reason about the

code containing an announce expression as well as (2) the code containing an invoke expression.

Again, ignoring concrete details, in the code containing the announce expression we do have access

to the event body. So we replace all invoke expressions in S with this event body. As a result, we

now have a pure OO specification expression that is a sound specification of this announcement of

the event Changed, Sann. This specification expression can be used to reason about the code that

contains announce expression. An important property of this step is that we only used the event

type’s contract and the code that was announcing events.

To reason about code that contains invoke expression, once again we start with a specification

constructed from event type’s contract, e.g., S. Note that the event body must refine the event type

pre- and postcondition (to avoid surprising handler methods). So we replace all invoke expression

in S with the pre- and postcondition of the event type’s contract. This gives us a pure and sound OO

specification of running two handlers and a correct event body, Sinv. Similarly, in this step as well, we

only used the event type’s contract and the code that contains invoke expression.

In the rest of this chapter, we describe these verification steps starting with the handler refinement.

3.2 Checking Handler Refinement

For sound modular reasoning, all handlers must be correct. A correct handler method in Ptolemy

must refine the translucid contract of each event type that the method handles. Checking refinement of

such a method is done in a two-step process. First, we statically verify whether the handler method’s

body, which is an expression (e) is a structural refinement of the translucid contract of the event type,

which is a specification expression (se). This step is performed as part of type-checking phase in

Ptolemy’s compiler. Second, we verify that handler method satisfies the pre- and postconditions of

the event type specification. This is currently checked at runtime (Section 3.4.5), however, a static

approach, such as extended static checking [7], could also be applied.

Figure 3.1 shows the structural refinement process where refinement is checked for each handler

method binding. CT is a fixed list of program’s declarations. Rule (CLASS TABLE REF) in Figure 3.1

checks structural refinement for each handler binding in the program. Rule (CHECK BINDING REF)

www.manaraa.com

14

creates the typing contexts (π,Π) for the specification expression that is the body of the translucid

contract and the program expression that is the body of the handler method and uses refinement rules

in Figure 3.2 to check their structural refinement. In structural refinement, specification expressions in

the contract are refined by program expressions in an implementation; however, program expression in

the contract are refined by textually identical program expressions in the refining implementation.

(CLASS TABLE REF)
∀c ∈ dom(CT), ∀binding ∈ CT (c) CT ` binding in c

` CT

(CHECK BINDING REF)
decl = tevent p {t1 var1 . . . tn varn contract},

decl ∈ CT, contract = requires sp0 assumes {se} ensures sp1,
(t m(thunk t′ var′0, t

′
1 var

′
1 . . . t

′
m var′m) {e}) ∈ CT (c), π = {next : thunk t, var1 : t1, . . . , varn : tn},

Π = {this : c, var′0 : thunk t′, var′1 : t′1, . . . , var
′
m : tm}, (π,Π) ` se v e

CT ` (when p dom) in c

Figure 3.1 Rules for checking structural refinement

A specification expression is refined by a program expression if its subexpressions are refined by

corresponding subexpressions of the concrete program expression. Figure 3.2 shows key rules for

checking that. There is no rule for register as it is not allowed in an event type specification.

Judgement (π,Π) `se v e states that specification expression se is refined by program expression e in

the specification typing environment π and program expression typing environment Π, which in turn

are constructed in the (CHECK BINDING REF) rule.

3.3 Example Handler Refinement

To illustrate the refinement rules in Figure 3.2, consider checking whether the handler method

update on lines 22–25 in Figure 1.2 refines the translucid contract’s body on lines 14–15.

As illustrated in Figure 3.3 and according to the rule for se1; se2 in Figure 3.2, this refinement holds

if (a) invoke(next) is refined by invoke(rest) and (b) establishes fe==old(fe) is

refined by refining establishes fe==old(fe) {Display.update(fe); fe}.

www.manaraa.com

15

For specification expression se, program expression e,
specification and program typing contexts π and Π,
se is refined by e, (π,Π) `se v e, as follows:
Cases of Spec. Exp. (se) Refined By (e) Side Conditions
n n
var var′ if π(var) == Π(var′)
sp.f sp′.f if (π,Π) `sp v sp′
sp! = null sp′! = null if (π,Π) `sp v sp′
!sp !sp′ if (π,Π) `sp v sp′
sp1&&sp2 sp′1&&sp′2 if (π,Π) `sp1 v sp′1,

(π,Π) `sp2 v sp′2
sp == n sp′ == n if (π,Π) `sp v sp′
sp < n sp′ < n if (π,Π) `sp v sp′
se1; se2 e1; e2 if (π,Π) `se2 v e2,

(π,Π) `se2 v e2
if(sp){seT } if(ep){eT } if (π,Π) `sp v ep,
else{seF } else{eF } (π,Π) `seT v eT ,

(π,Π) `seF v eF
while(sp){se} while(ep){e} if (π,Π) `sp v ep,

(π,Π) `se v e
t var = se1; se2 t var = e1; e2 if (π,Π) `se1 v e1,

π′ = π∪−{var : (t, l)},
Π′ = Π∪−{var′ : (t, l)},
(π′,Π′) ` se2 v e2

refining spec{se} refining spec{e} if (π,Π) `se v e
spec refining spec{e}
invoke(se) invoke(e) if (π,Π) `se v e
announce p(se){se} announce p(ē){e} if (π,Π) `se v ē,

(π,Π) `se v e
either {seT } or {seF } if(ep){eT }else{eF } if (π,Π) `seT v eT ,

(π,Π) `seF v eF
either {seT } or {seF } eT if (π,Π) `seT v eT
either {seT } or {seF } eF if (π,Π) `seF v eF

Figure 3.2 Structural refinement relation (v)

10 Fig event Changed{

..

12 requires fe != null

13 assumes{

14 invoke(next);

15 establishes fe==old(fe)

16 }

17 ensures fe != null

(next);(next);

21 Fig update(thunk Fig rest,Fig fe){

22 invoke(rest);

23 refining establishes fe==old(fe){

24 Display.update(fe); fe

25 }

26 }

(fe){

}

(rest);invoke(rest);

24

(next);(next); 22 Refines

Figure 3.3 Handler refinement

For proving condition (a), we must check whether the subexpression next is refined by the subex-

pression rest. This can be done by the rule for var, which states that both variables next and rest

must be given the same type by their respective typing contexts (π and Π). The specification typing

www.manaraa.com

16

context π in this case, gives type thunk Fig to next, which is the same as the type for rest given

by the program typing context Π. By applying the rule for spec in Figure 3.2, we can prove (b) because

specification predicates refining establishes fe==old(fe) are the same in both specifica-

tion expression and the program expression. Thus, the handler method update correctly refines the

translucid contract for the event type Changed.

The refinement rule for the case spec deserves further explanation. It states that a specification

expression spec is refined by an expression refining spec {e}, which claims to refine the same

specification spec. The claim that e satisfies spec is discharged using runtime assertion checking as

discussed in Section 3.4.5. The rules in Ptolemy’s operational semantics which discharge this condition

are shown in Figure 7.1, rule (REFINING).

3.4 Verifying Ptolemy Programs

The main difficulty in verifying Ptolemy programs is that announce and invoke expressions

could cause a statically unknown set of handlers (advice) to run. This set is not known statically unless

a whole program analysis is performed. Thus such knowledge is not part of modular verification.

Despite this, translucid contracts make modular verification possible. The challenge is to verify the

code containing announce and invoke expressions. The basic idea is to use the translucid contract

of the event type in place of each handler as discussed in Section 3.1. There are two types of methods

to verify, regular methods which might announce event and handler method which handle the events.

3.4.1 Verification of Regular Methods

To statically verify a non-handler method t m (t̄ var){e} we must replace any occurrence of

announce expression in its body e with a simulating expression for verification. The translation

function Tr given in Figure 3.4 shows how to do that. Basically, a translation function Tr(se, be, p)

inlines event type specification/event body in place of announce/invoke expressions in se, as informally

discussed in Section 3.1, to compute a simulating specification expression, modeling event announce-

ment. Event p is the announced event, if any, and be is the event body. Function Tr is discussed in

greater detail in Section 3.4.3.

www.manaraa.com

17

For specification expressions se, expressions be, event types p,
where p has contract requires spp assumes {sep} ensures sp′p
and context variables t var,
Tr(se, be , p) =

Cases of se Result Side Condtions
n, var , null, new c(),
next , spec

se

old (se1) old (se2) if se2 = Tr(se1 , be , p)
se1.f se2.f if se2 = Tr(se1 , be , p)
either {se0} or {se1} either {se′0} or {se′1} if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
se.m(se) se′.m(se′) if se′ = Tr(se, be , p),

se′ = Tr(se, be , p)
se0.f = se1 se′0.f = se′1 if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
if(ep){se0} else{se1} if(ep′){se′0}else{se′1} if ep′ = Tr(ep, be , p),

se′0 = Tr(se0 , be , p),
se′1 = Tr(se1 , be , p)

while(ep){se} while(ep′){se′0} if ep′ = Tr(ep, be , p),
se′ = Tr(se, be , p)

cast c se cast c se′ if se′ = Tr(se, be , p)
se0; se1 se′0; se′1 if se′0 = Tr(se0 , be , p),

se′1 = Tr(se1 , be , p)
t var =
se0; se1

t var = se′0; se′1 if se′0 = Tr(se0 , be , p),
se′1 = Tr(se1 , be , p)

refining spec {se1} spec
register(se1) se2 if se2 = Tr(se1 , be , p)
invoke(se1) refining spec{

either {se2; be}
or {se2; se3}
}

if se2 = Tr(se1 , be , p),
se3 = Tr(sep , be , p),
spec = requires spp

ensures sp′p
announce p′ (se) {se1} refining spec{

either {se′; se′1}
or {t′ var′ = se′ ; se′2}
}

if p′ has translucid contract
requires spp′
assumes {sep′}

ensures sp′
p′ and

context variables t′ var′,
se′ = Tr(se, be , p),
se′1 = Tr(se1 , be , p′),
se′2 = Tr(sep′ , se′

1 , p
′),

spec = requires spp′

ensures sp′
p′

Figure 3.4 Translation algorithm. The algorithm for converting program expres-
sions into specification expressions that simulate running of handlers.

For the method m above with the body of e, we compute Tr(e,skip,⊥). The arguments skip

and ⊥ specify that this method does not handle any events (⊥) and thus there is no event body (skip)

which basically means the method is a non-handler. These parameters are included in this case simply

to facilitate uniform application of the Tr function for both regular (non-handler) and handler methods.

The result of Tr(e,skip,⊥) is a specification expression with no Ptolemy-specific features, but

may have extra expressions which simulate event announcement and running of handlers. This expres-

sion can then be used to perform standard weakest precondition based verification for OO programs.

www.manaraa.com

18

3.4.2 Verification of Handler Methods

To statically verify a handler method h of the form t h (thunk t0 var0, t̄ var) {e}, for each event

type p with a binding when p do h, one does the following. Let the contract for p be requires spp

assumes {sep} ensures sp′p, then compute Tr(e,requires spp ensures sp′p, p) and use the

result to verify the handler h. The second argument to Tr is a specification statement consisting of the

event’s pre- and postconditions; this is used in the place of the announced event’s body, since the event

body is not available during static verification of the handler, and since this specification statement

must be refined by all event bodies. The result of Tr(e,requires spp ensures sp′p, p) is a pure

OO specification expression.

3.4.3 Translation Function

As illustrated in Section 3.1, the translation function Tr(se, be, p), with p as the announced event

and be as the body of p, inlines event type specification or event body in the place of announce and

invoke expressions in se, and computes a simulating specification of the event announcement. An-

nounce and invoke expressions are replaced by the event type’s contract if there are more applicable

handlers and are replaced by the event body otherwise. As existence or non-existence of more applica-

ble handlers is not decidable statically, the translation algorithm considers occurrence of both of these

situations simultaneously using an either − or choice expression, as shown in Figure 3.4.

Most cases in the translation function Tr are straightforward as they just recursively apply Tr to

their subexpressions and compose the results. Translations of refining, announce and invoke expres-

sions are of more interest, though. Translation of refining spec {e} is spec as the runtime assertion

checking ensures that e refines the spec. The cases for invoke and announce expressions are central as

they model event announcement by simulating running of the handlers and the event body.

Translations of invoke and announce expressions, both produce an either − or choice expres-

sion guarded by a refining expression. The either-branch simulates the situation when there is no

applicable handler whereas the or-branch is handles the situation when there exist more handlers to run.

In the translation of invoke (se1), the either-branch contains a sequence of two expressions:

translation of the argument se1 and the event body be, which means no more handler to run. The or-

www.manaraa.com

19

branch contains a sequence of two expressions too: translation of argument se1 and translation of the

translucid contract sep. The guarding refining expression assures that specification spec is satisfied by

the choice expression inside. spec contains pre- and postcondition of the contract sep.

Translation of announce expression is similar to the invoke. In case of announce p′ (se) {se1},

the either-branch contains a sequence of two expressions: translation of the argument se and the trans-

lation of event body se1. In or-branch the first expression is the translation of the arguments and their

assignment them to context variables var′ . The second expression is the translation of the translucid

contract of event p′, i.e. sep′ , assuming that the event body is se′1, the translation of se1. The translation

of sep′ simulates running of handlers for event p′ with a concrete event body and event type’s translucid

contract as an abstraction for handlers.

The translation function Tr(e, be, p) treats e as a subset of se ∪ {spec}. Since the syntactic set

se∪{spec} is a strict superset of syntactic set e, for every expression e there is an equivalent expression

in the set se ∪ {spec}.

The translation function assumes an acyclic event announce/handle relation. Circular relations

could simply be detected statically.

3.4.4 Illustration of the Verification Algorithms

To illustrate, consider verifying the method setX in Figure 1.1 with the translucid contract in

Figure 1.2. The body of this method is the announce expression announce Changed(this){

this.x = x; this}. To verify this method, we first apply the translation function

Tr(se,skip,⊥) with se = announce Changed(this){this.x = x;this} as this method

is a non-handler regular method. The case for announce expression in Figure 3.4 is applicable, which

results in the specification expression shown in Figure 3.5.

Notice the use of the translation function Tr on lines 4–5. To verify this expression both the

either-branch and the or-branch must be verified. During the verification, upon reaching the translation

function, it is unrolled one more time resulting in the specification expression shown in Figure 3.6.

During this application, the cases for sequence, spec and invoke expressions are used, which again

results in an embedded translation function Tr on lines 6–7. The astute readers may have observed

www.manaraa.com

20

1 refining requires fe != null ensures fe!= null{

2 either { this ; this.x = x; this }

3 or { Fig fe = this ;

4 Tr(invoke(next); establishes fe==old(fe),

5 this.x = x; this, Changed) }

6 }

Tr

5

Translation function

(fe),

5 = x; , Changed) }

Figure 3.5 Translation of method setX

1 refining requires fe!= null ensures fe!= null{

2 either { this ; this.x = x; this }

3 or { Fig fe = this ;

4 refining requires fe!= null ensures fe!= null{

5 either { next; this.x = x; this }

6 or { next; Tr(invoke(next); establishes fe==old(fe),

7 this.x = x; this, Changed) }

8 }

9 establishes fe == old(fe) }

10 }

6

7

}

establishes

Unrolling translation function

5

6

7

6

Figure 3.6 Unrolling translation function

that we have essentially reduced problem of verifying announce and invoke expressions to a prob-

lem similar to reasoning about loops. Thus, standard techniques for reasoning about loops, such as

proof rules that rely on user-supplied invariants, could be applied here. Heuristics like the one used

in ESC/Java [7] to unroll the loops are also applicable here. When the verifier decides to terminate

recursive unrolling, based on any of the above-mentioned approaches, the translation function in the

result expression is just ignored. Verification of the method update is similar.

3.4.5 Runtime Assertion Checking (RAC)

As previously mentioned, some of the verification obligations encountered during the verification

are discharged by relying on runtime assertions. Runtime checking discharges the following obli-

gations, verifying that: (1) each handler method satisfies the specification of the event types it han-

dles (2) each event body satisfies the pre- and postconditions of its event type specification, (3) each

refining expression body refines the specification it claims to refine, and (4) each event announce-

www.manaraa.com

21

10 Fig event Changed {

…

12 requires fe != null

13 assumes{

14 invoke(next);

15 establishes fe == old(fe)

16 }

17 ensures fe != null

…

20 class Update {

…

//@ requires rest.fe != null;

21 Fig update(thunk Fig rest, Fig fe){

//@ requires rest.fe != null;

22 invoke(rest);

//@ ensures rest.fe != null;

//@ requires true;

23 refining establishes fe==old(fe){

24 Display.update(fe); fe

25 }

//@ ensures rest.fe==old(rest.fe);

26 }

//@ ensures rest.fe != null;

28 }

P
o
s
t

P
r
e

P
r
e

P
r
e

P
r
e

28282828282828282828282828

26

////////////////////////

26

2828282828282828282828

P
o
s
t

//

25 }

//////////////

26 }

//@ //@

P
o
s
t

//

22 in

////////

P
r
e

P
r
e

P
o
s
t

2 class Point extends Fig {

…

4 Fig setX(int x){

//@ requires this != null;

5 announce Changed(this){

//@ requires this != null;

6 this.x = x; this

//@ ensures this != null;

7 }

//@ ensures this != null;

9 }

P
r
e

P
r
e

th

////////////////////////

6 th

P
o
s
t

7 }

//////////////////////

7

P
o
s
t

Figure 3.7 Runtime assertion checking (RAC). Gray lines show pseudo code cor-
responding to generated code by the compiler.

ment and consequent execution of all of its handler methods combined behavior, satisfies pre- and

postconditions of the event type, regardless of the number of the handlers and their order of execution.

Alternatively, a static checker like ESC/Java [7] could discharge these assumptions.

We have implemented runtime assertion checking in the Ptolemy compiler [18]. Figure 3.7 il-

lustrates insertion of runtime probes by the Ptolemy compiler in the generated code. An abstraction

function matches up context variable fe to its corresponding variables in the scopes of subject Point

and handler Update.

To meet obligation (1) pre- and postcondition probes are inserted at the beginning and end of

handler method body, before line 21 and after line 26. Runtime probes right before and after line 6

guarantee obligation (2). To verify that the refining expression on lines 23-25 refines the specification it

claims to refine, obligation (3), runtime assertions are inserted before line 23 and after line 25. Finally

to assure obligation (4) that event announcement and execution of handler methods does not violate

the event type pre- and postconditions, runtime checks are enforced before and after announce and

invoke expressions in the code. Runtime probes before line 5 and after line 7 guarantee the obligation

for announce whereas probes right before and after line 22 meet the obligations for invoke.

www.manaraa.com

22

CHAPTER 4. Analysis of Expressiveness

To analyze the expressiveness of translucid contracts, in this section we illustrate their application

to specify base-aspect interaction patterns discussed by Rinard et al. [24]. Rinard et al. classify base-

advice interaction patterns into: direct and indirect interference. Direct interference is concerned about

control flow interactions whereas indirect interference refers to data flow interactions. Direct interfer-

ence is concerned about calls to invoke, which is the Ptolemy’s equivalent of AspectJ’s proceed.

Direct interference is further categorized into 4 classes of: augmentation, narrowing, replacement and

combination advice which call invoke exactly once, at most once, zero and any number of times, re-

spectively. An example, built upon the drawing editor example in Chapter 1, is shown for each category

of the direct interference.

4.1 Direct Interference: Augmentation

Informally an augmentation handler evaluates invoke expression exactly once. An augmentation

handler can be a before or after handler. After-augmentation handler is executed after the event body

whereas in the before augmentation the order is opposite.

1 Fig event Changed{

2 Fig fe;

3 requires fe != null

4 assumes{

5 invoke(next);

6 establishes fe==old(fe)

7 }

8 ensures fe != null

9 }

invoke

establishes

ensures

Exactly one invoke

{

establishes fe==establishes

Figure 4.1 Specifying augmentation with a translucid contract

www.manaraa.com

23

To illustrate consider the translucid contract in Figure 4.1 on lines 3–8. Translucid contracts are

required to reveal all appearances of the invoke expression, thus it is assured that all refining handlers

will evaluate invoke expression exactly once.

Furthermore, invoke is called at the beginning of the contract, requiring event handlers to run

after the event body which means not only the refining handlers are augmentation handlers, but also

that they run after the event body, after-augmentation handlers.

Method log in class Logging in Figure 4.2 is an example of a conforming after-augmentation

handler. The requirement for this method is “to log the changes when figures are changed”. The handler

log causes the event body to be run first by calling invoke on line 12 and then logs the changes in

the figure on line 14. The classes Point and Fig are the same as in Figure 1.1.

10 class Logging{

11 Fig log(thunk Fig rest, Fig fe){

12 invoke(rest);

13 refining establishes fe==old(fe){

14 Log.logChanges(fe); fe

15 }

16 }

17 when Changed do log;

18 }

Figure 4.2 After-augmentation handler

Structural similarity requires the handler implementation to evaluate invoke exactly once and

at its very beginning which in turn ensures that the handlers is an “after-augmentation” handler. The

handler refines the contract because line 12 matches line 5 and the refining expression on lines 13–15

refines the same specification as on line 6.

4.2 Direct Interference: Narrowing

A narrowing handler evaluates invoke at most once, which implies existence of a conditional

statement guarding invoke.

To illustrate consider the translucid contract in Figure 4.3 on lines 5–8 which specifies narrowing

handlers. The contract reveals appearances of invoke expression and the if expression guarding that

which in turn ensures that invoke expression is evaluated at most once. It does not, however, reveal

www.manaraa.com

24

1 Fig event Changed{

2 Fig fe;

3 requires fe != null

4 assumes{

5 if(fe.fixed == 0)

6 invoke(next)

7 else

8 establishes fe==old(fe)

9 }

10 ensures fe != null

11 }

7

ensures

At most one invoke

(fe)

Figure 4.3 Specifying narrowing with a translucid contract

the actual code that must refine the specification on line 8. All the refining handlers will have the

same structure in their implementation with regard to invoke and if expressions, which makes them

narrowing handlers.

Figure 4.4 illustrates a narrowing handler refining the contract shown in Figure 4.3. The handler

implements an additional requirement for the figure editor example that “some figures are fixed and

thus they may not be changed or moved”. To implement the constraint the field fixed is added to the

class Fig, line 23. For fixed figures the value of this field is 1 and 0 otherwise. The class Point is the

same as in Figure 1.1. To implement the constraint the handler check skips invoking the base code

whenever the figure is fixed (checked by accessing the field fixed).

12 class Enforce{

13 Fig check(thunk Fig rest, Fig fe){

14 if(fe.fixed == 0)

15 invoke(rest)

16 else

17 refining establishes fe==old(fe){

18 fe

19 }

20 }

21 when Changed do check;

22 }

23 class Fig { int fixed; }

Figure 4.4 Narrowing handler

For the handler check to refine the contract in the event type Changed, its implementation must

structurally match the contract. The true block of the if expression on line 14–15 refines the true block

www.manaraa.com

25

of the if on lines 5–6 as they textually match. The false block of the if on line 16–19 refines the false

block of the if on lines 7–8 because lines 17–19 claim to refine the specification on line 8. This claim

is discharged by runtime assertions.

4.3 Direct Interference: Replacement

A replacement handler omits the execution of the original event body and runs the handler body

instead. In Ptolemy this can be achieved by omitting the invoke expression in the handler.

1 Fig event Moved{

2 Point p;

3 int d;

4 requires p != null && d > 0

5 assumes{

6 preserves p != null && p.y == old(p.y)

7 }

8 ensures p != null

9 }

6 preserves

ensures

No invoke

Figure 4.5 Specifying replacement with a translucid contract

Figure 4.5 shows the contract in event type Moved specifying replacement handlers by not evaluat-

ing any invoke expression in the contract, line 6. Notice that (non) existence of an invoke expression

in the contract requires the handler implementation to (not) evaluate the invoke in its body.

10 class Scale{

11 int s;

12 Fig scaleit(thunk Fig rest, Point p, int d){

13 refining preserves p!=null && p.y==old(p.y){

14 p.x += s*d; p

15 }

16 }

17 when Moved do scaleit;

18 }

19 class Point extends Fig{

20 int x, int y;

21 Fig moveX(int d){

22 announce Moved(this, d){

23 this.x += d; this

24 }

25 }

26 }

Figure 4.6 Replacement handler

www.manaraa.com

26

Figure 4.6 shows a replacement handler refining the contract in Figure 4.5. The example uses

several standard sugars such as += and >. In this example, the method moveX causes a point to move

along the x-axis by amount d. The handler scaleit implements the requirement that the “amount of

movement should be scaled by a scaling factor s, defined in class Scale”.

If an contract has no invoke expression, none of the refining handlers are allowed to have an

invoke in their implementation. Otherwise the structural similarity criterion of the refinement is

violated. The handler scaleit refines Moved’s contract because its body on lines 13–15 matches

the specification on line 6.

4.4 Direct Interference: Combination

A Combination handler, typically useful for fault tolerance, can functionalities, can evaluate

invoke expression any number of times. (In AspectJ, this would be equivalent to one or more calls

to proceed in an around advice, guarded by some condition or in a loop.) Figure 4.7 illustrates a

combination contract and a handler. The translucid contract in the event type specification on lines

5–11 allows an invoke expression to be evaluated zero or more number of times. This is achieved by

guarding the invoke expression by while. Based on the contract specially looking at the while loop

surrounding invoke, the base code developer can conclude that handler methods for event ClChange

may run the original event body multiple times. The developer, however, is not aware of the concrete

details of handlers, thus those details remain hidden.

A combination handler is illustrated in Figure 4.7 lines 15–34. In this example, colors are added to

the figures elements by adding a field color to the class Fig and by providing a method setColor

for picking the color of the figure, lines 35–43. The class Color which provides a method nextCol

to get the next available color is not shown.

To implement the requirement that “each figure should have a unique color”, event type ClChange

is declared as an abstraction of events representing colors changes. The method setColor changes

colors so it announces the event ClChange on lines 39–41. The body of the announce expression

contains the code to obtain the next color on line 40. The handler Unique on lines 15–34 implements

this requirement by storing already-used colors in a hash table (colors). The field colFix is added

www.manaraa.com

27

1 Color event ClChanged{

2 Fig fe;

3 requires fe != null

4 assumes{

5 while(fe.colFix==0){

6 invoke(next);

7 either

8 preserves fe != null

9 or

10 preserves fe.colFix==0

11 }

12 }

13 ensures fe != null

14 }

6

either

or

preserves

ensures

Zero or more invokes

while

6 ();6

either

8 preserves 8

or

preserves preserves

15 class Unique{

16 HashMap colors;

17 Color check(thunk Color rest,

18 Fig fe){

19 while(fe.colFix == 0){

20 invoke(rest);

21 if(colors.get(fe.c) != null)

22 refining preserves fe!=null{

23 colors.put(fe.c);

24 fe.colFix = 1;

25 fe.c

26 }

27 else

28 refining preserves fe.colFix==0{

29 fe.c

30 }

31 }

32 }

33 when ClChange do check;

34 }

20 invoke(rest);

19

20 20
Refines

if

23

24

25

}

21

22

else

28 fe.colFix==0{

29

30

28 28

35 class Fig{

36 Color c;

37 int colFix = 0;

38 Color setColor(){

39 announce ClChange(this){

40 this.c = c.nextCol()

41 }

42 }

43 }

Figure 4.7 Combination contract and handler

to class Fig to show that a unique color has been chosen and fixed for the figure. When the handler

method check is run it checks colFix to see if a color has been chosen yet or not. If not then

it invokes the event body generating the next candidate color. If the color is already used, checked

by looking it up in the hash table, event body is invoked again to generate the next candidate color.

Otherwise, the current color is inserted into the hash table and colFix is set to 1, lines 21–26.

The specification for ClChange on lines 4–12 says that a combination handler will be run when

this event is announced. The specification makes use of the choice feature, on line 7–10. To correctly

refine the specification, based on the refinement rules in Figure 3.2, a handler can either have a refin-

ing if expression at the corresponding place in its body or it can have an unconditional expression

refining the either-block or the or-branch in the specification. Refinement between specification and

implementation blocks is illustrated in the figure.

4.5 More Expressive Control Flow Properties

Rinard et al.’s control flow properties are only concerned about calls to invoke. Their proposed

technique decides which class of interference and category of control effects each isolated advice be-

longs to [24]. However, it can not be used to analyze the possibility of two or more control flow paths

www.manaraa.com

28

each of which being, e.g. an augmentation, if each path maintains a different invariant. Figure 4.8

illustrates such a scenario with an example adapted from [12].

1 Fig event Moved{

2 Point p;

3 requires p != null

4 assumes{

5 invoke(next);

6 if(p.x<5 && p.y<5)

7 establishes p.s==10

8 else

9 establishes p.s==1

10 }

11 ensures p != null

12 }

6

7

8

9

13 class Scaling{

14 Fig scaleit(thunk Fig rest,

15 Point p){

16 invoke(rest);

17 if(p.x<5 && p.y<5)

18 refining establishes p.s==10{

19 p.s = 10; p

20 }

21 else

22 refining establishes p.s==1{

23 p.s = 1; p

24 }

25 }

26 when Moved do scaleit;

27 }

28 class Point{

29 int x, int y, int s;

30 Point init(int x, int y){

31 this.x = x; this.y = y;

32 this.s = 1; this

33 }

34 int getX(){x*s}

35 int getY(){y*s}

36 Fig move(int x, int y){

37 announce Moved(this){

38 this.x = x; this.y = y; this

39 }

40 }

41 }

if

p.s==10{

20

22

24 }

19

20 20
Refines

Figure 4.8 Expressive control flow properties beyond [24]

In this example the requirement is “a point should be visibly distinguished from the origin” [12].

If the point is close enough to the origin, its coordinates will be scaled up by a scaling factor s added

to Point on line 29, initially set to 1, line 32. The scaling factor s has only two values: 1 and 10.

The requirement is implemented in the handler method scaleit which runs whenever event Moved

is announced and sets up the scaling factor to 10 if the point is close enough to the origin (vicinity

condition). The vicinity condition is true if the point’s x and y coordinates are both less than 5. The

class Fig is the same as in Figure 1.1.

The assertions to be validated here are as follows: (i) all of the handlers are after-augmentation

ones, (ii) the scaling factor s is either 1 or 10, and (iii) sis set to 10 if and only if the vicinity condition

holds. Rinard et al.’s proposal could only be used to verify (i) and a behavioral contract could specify

(ii) but none of them could specify (iii). However translucid contracts can. On lines 6–9 there is a

specification that conveys to the developer of the class Point that a conforming handler method will

satisfy all three of the above-mentioned assertions.

www.manaraa.com

29

In summary, we showed how translucid contracts enable specification and automatic verification,

via structural refinement, of control flow interference between a subject and its observers. Translucid

contracts are expressive enough to specify and enforce Rinard et al.’s [24] control interference even

ones which could not be specified by previous works on the design by contract for aspects.

www.manaraa.com

30

CHAPTER 5. Applicability to Other AO Interfaces

We now discuss the applicability of our technique to other approaches for AO interfaces. As dis-

cussed previously, there are several competing and often complementary proposals for AO interfaces.

For example, Kiczales and Mezini’s aspect-aware interfaces (AAI) [13], Sullivan et al.’s crosscutting

interfaces (XPIs) [28], Aldrich’s Open Modules [1], and Steimann et al.’s join point types [27]. We

have tried out several of these ideas and our approach works beautifully. Since Steimann et al.’s join

point types [27] and Hoffman and Eugster’s explicit join points (EJP) are similar in spirit to Ptolemy,

which we have already discussed in previous chapters, we do not present the straightforward adap-

tation of our ideas to their work here. Rather we focus on the AspectJ implementation of the XPI

approach [28], Kiczales and Mezini’s AAIs [13], and Aldrich’s Open Modules [1] that are substantially

distinct from event types [19, Fig. 10].

5.1 Translucid Contracts for XPIs and AAIs

Sullivan et al. [28] proposed a methodology, that they call crosscut programming interface (XPI)

for aspect-oriented design based on design rules.

1 aspect Changed {

2 pointcut jp(Fig fe):

3 call(void Fig+.set*(..))&& target(fe);

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 5.1 Applying translucid contract to an XPI

www.manaraa.com

31

The key idea is to establish a design rule interface which serves to decouple the base design and the

aspect design. These design rules govern exposure of execution phenomena as join points, how they

are exposed through the join point model of the given language, and constraints on behavior across join

points (e.g. provides and requires conditions [28]).

XPIs prescribe rules for join point exposure, but do not provide a compliance mechanism. Sulli-

van et al. have shown that at least some design rules can be enforced automatically using AspectJ’s

features[28]. Current proposals for XPIs, however, all use behavioral contracts [28].

As shown previously, use of behavioral contracts, limits the expressiveness of the assertions which

could be made using XPI. Behavioral contracts cannot reveal control flow details, which might be

needed for reasoning about interference from control effects in cases such as those discussed above.

In this section, we show that translucid contracts can also be applied to enable expressive assertions

about aspect-oriented programs that use the XPI approach. We also discuss changes in the refinement

rules that are needed to verify such programs. To illustrate, consider the narrowing example from

Section 4.2 shown in Figure 5.1 and Figure 5.2, where the constraint on movement of figures is im-

plemented as an XPI and an aspect. Figure 5.1 shows the XPI Changed along with the translucid

contract on lines 4–11. An XPI typically also contains a description of scope, which we omit here. In

the context of XPIs, the language for expressing translucid contract is slightly adapted to use proceed

instead of invoke on line 7. Other than that, our syntax works right out-of-the-box.

13 aspect Enforce {

14 Fig around(Fig fe): Changed.jp(fe){

15 if(fe.fixed == 0)

16 proceed(fe);

17 else

18 refining establishes fe==old(fe){

19 return fe;

20 }

21 }

22 }

23 class Fig { int fixed; }

Figure 5.2 Narrowing advice for XPI

Unlike translucid contracts for event types in Ptolemy, where the contract is thought of as attached

to the type, in the XPI, contracts are thought of as attached to the pointcut declaration, e.g. the contract

www.manaraa.com

32

on lines 4–11 is attached to the pointcut on lines 2–3. The variables that can be named in the contract

are those exposed by the pointcut. For example, the contract can only use fe.

Our proposal for verifying refinement also needs only minor changes. Figure 5.2 shows a refining

advice for the translucid contract of Figure 5.1. Unlike Ptolemy, where the event types of interest

are specified in the binding declarations, in Sullivan et al.’s version of XPIs, aspects reuse the pointcut

declarations from the XPI in the advice declaration (lines 14). Our refinement rules could be added here

in the AO type system. So for an advice declaration to be well-formed, its pointcut declaration must

be well-formed, the advice body must be well-formed, and the advice body must refine the translucid

contract of the pointcut declaration. This strategy works for basic pointcuts, for compound pointcuts

constructed using rules such as (pcd1 && pcd2 or pcd1 || pcd2), where both pcd1 and pcd2 are

reused from different XPIs and thus may have independent contracts more complex refinement rules

will be needed, which we have not explored in this thesis.

1 Point extends Fig {

2 int x, int y;

3 Fig setX(int x): Update -

4 after returning Update.jp(Fig fe)

5 requires fe != null

6 assumes{

7 if(fe.fixed == 0)

8 proceed(fe);

9 else

10 establishes fe == old(fe);

11 }

12 ensures fe != null

13 /* body of setX */

14 }

Figure 5.3 Applying translucid contract to an AAI

Join point interfaces like XPIs could be computed from the implementation rather than being ex-

plicitly specified, given whole-program information. Kiczales and Mezini [13] follow this approach

to extract aspect-aware interfaces (AAI). A detailed discussion of the trade-offs of such interfaces is

the subject of previous work[28]. However, an important property of AAIs is that advised join points

contain the details of the advice. An example based on the narrowing example of Section 4.2 is shown

in Figure 5.3. The extracted AAI for the method setX is shown on lines 3-4. An adaptation of this

extraction to include translucid contracts will be to carry over the contract from the pointcut to the join

point shadow as shown on lines 5–12.

www.manaraa.com

33

Syntax and refinement rules similar to XPIs are applicable here. Like AAI annotations that pro-

vide developers of Point with information about potentially advising aspects, added contract would

provide developers of Point with richer abstraction over the aspect’s behavior. Similar ideas can

also be applied to aspect-oriented development environments such as AJDT, which provide AAI-like

information at join point shadows in an AO program.

5.2 Translucid Contracts for Open Modules

Aldrich’s proposal on Open Modules [1] is closely related to Ptolemy’s quantified, typed

events [19]. Open Modules allows a class developer to explicitly expose pointcuts for behavioral modi-

fications by aspects, which is similar to signaling events using the announce expressions of Ptolemy.

The implementations of these pointcuts remain hidden from the aspects. As a result, the impact of

base code changes on the aspect is reduced. However, quantification in Ptolemy is more expressive

compared to Open Modules. In open modules, each explicitly declared pointcut has to be enumerated

by the aspect for advising. On the other hand, Ptolemy’s quantified, typed events significantly simplify

quantification. Instead of manually enumerating the join points of interest, one can use the name of

the event type for implicit non-syntactic selection of join points. This affects applicability of translucid

contracts to Open Modules.

1 module FigModule {

2 class Fig;

3 expose to Enforce: call(void Fig+.set*(..));

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 5.4 Applying translucid contract to Open Modules

To show the applicability of translucid contracts to Open Modules, we revisit the narrowing exam-

ple from Section 4.2. Figure 5.4 and Figure 5.5 show the implementation of the same scenario using

Open Modules. In implementing the example, we use the syntax from the work of Ongkingco et al.

www.manaraa.com

34

13 aspect Enforce {

14 Fig around(Fig fe): target(fe) &&

15 call(void Fig+.set*(..));

16 if(fe.fixed == 0)

17 proceed(fe);

18 else

19 refining establishes fe==old(fe){

20 return fe;

21 }

22 }

23 }

24 class Fig { int fixed; }

Figure 5.5 Narrowing handler for Open Module

[16] to retain similarity with other examples. In the listing constraints on the movement of figure is

encapsulated in the module (aspect) Enforce in Figure 5.5. Open module FigModule in Figure 5.4

exposes a pointcut of class Fig on line 2–3, marked by the keyword expose to. The exposed

pointcut is advisable only by the aspect Enforce. The translucid contract on lines 4–11 states the

behavior of interaction between specified aspect Enforce as shown in Figure 5.5 and the exposed

pointcut through expose to construct. The adaptations in the syntax of contracts are the same as in

the case of the XPIs discussed in Section 5.1.

Like contracts in XPIs, contracts in Open Modules are attached to a pointcut declaration, e.g. the

contract on lines 4–11 is attached to the exposed pointcut defined on lines 2–3. Variables that can be

named in the contract are those exposed by the pointcut, e.g., the contract can only use the variable fe.

The rules proposed for verifying refinement need to be modified slightly as well. In Ptolemy, event

type of interest is specified in the binding declaration whereas in AspectJ’s version of Open Modules,

aspects could not reuse pointcuts exposed by an Open Module and need to enumerate the pointcut in the

advice declaration again (lines 14–15). Our refinement rules could be added here in an AO type system.

Well-formedness of basic and compound pointcuts follow the same rules laid out in Section 5.1.

This example illustrates how our approach might be used as a specification and verification tech-

nique for Open Modules. The only challenge that we saw in this process was to match an aspect’s

pointcut definition with the open module’s pointcut definition to import its contract for checking re-

finement. Like translucid contracts for Ptolemy, in the case of Open Modules specification serves as a

more expressive documentation of the interface between aspects and classes.

www.manaraa.com

35

CHAPTER 6. Related Ideas

There is a rich and extensive body of ideas that are related to ours. Here, we discuss those that

are closely related under three categories: contracts for aspects, proposals for modular reasoning, and

verification approaches based on grey box specification.

6.1 Contracts for Aspects

This work is closest in the spirit to the work on crosscutting programming interfaces (XPIs) [28].

XPIs also allow contracts to be written as part of the interfaces as provides and requires clauses.

Similar to translucid contracts, the provides clause establishes a contract on the code that announces

events, whereas the requires clauses specifies obligations of the code that handles events. However,

the contracts specified by these works are mostly informal behavioral contracts and thus are not easily

checked automatically. Furthermore, these works do not describe a verification technique and contracts

could be bypassed.

Skotiniotis and Lorenz [26] propose contracts for both objects and aspects in their tool Cona.

Cona’s contracts are black box, and thus do not reveal any information about control flow effects.

Similarly, Pipa is a behavioral specification language for AspectJ [31]. Pipa supports specification

inheritance and specification crosscutting. It relies on textual copying of specifications for specification

inheritance and syntactical weaving of specification for specification crosscutting. AspectJ program

annotated with JML-like Pipa’s specifications could be transformed into JML and Java code. JML-

based verification tools could enforce specified behavioral constraints. All of these ideas use black box

contracts and thus may not be used to reason about control effects of advice.

www.manaraa.com

36

6.2 Modular Reasoning

There is a large body of work on modular reasoning about AO programs on language designs

[1, 6, 9], design methods [13, 28], and verification techniques [10, 14]. Our work complements ideas in

the first and the second categories and can use ideas in the third category for improved expressiveness.

Compared to work on reasoning about implicit invocation [3, 8], our approach based on structural

refinement is significantly lightweight. Furthermore, it accounts for quantification that these ideas do

not account for.

Oliveira et al. [17] introduce a non-oblivious core language with explicit advice points and explicit

advice composition requiring effects modeled as monads to be part of the component interfaces. Their

statically typed model could enforce control and data flow interference properties. Their work shares

commonalities with ours in terms of explicit interfaces having more expressive contracts to state and

enforce the behavior of interactions. However, it is difficult to adapt their ideas built upon their non-AO

core language, to II, AO, and Ptolemy as they do not support quantification.

Hoffman and Eugster’s explicit join points [9] and Steimann et al.’s join point types [27] share

similar spirit with Rajan and Leavan’s event types [19]. Although Steimann et al. proposed informal

behavioral specification, their work has no explicit notion of formally expressed and enforced contracts,

or stating interaction behavior, nor do any of these other approaches.

The work of Khatchadourian et al. [11] is closely related in that it addresses both specification

and modular verification of AO programs. They use a rely-guarantee approach to specification and

verification. Black box behavioral specifications are attached to PCDs in pointcut interfaces, in a

way similar to our work. The assumes part of a translucid contract plays a role similar to the rely

conditions in their specifications, since it specifies the possible state transformations that advice may

implement. Structural refinement in our approach plays a role similar to the guarantee part of their

specification, since it also limits what the advice (or handler) can do. The main difference is that they

use “join point traces” to reason about control effects, which adds an extra burden on the specifier and

verifier compared to our grey box approach, which allows more traditional reasoning about control

effects in terms of the underlying programming language’s control flow. Their approach is based on

black box behavioral specification.

www.manaraa.com

37

6.3 Grey Box Specification and Verification

This work builds upon previous research on grey box specification and verification [5]. Among oth-

ers, Barnett and Schulte have used grey box specifications written in AsmL [4] for verifying contracts

for .NET, Wasserman and Blum [30] also use a restricted form of grey box specifications for verifica-

tion, Tyler and Soundarajan [29] and most recently Shaner et al. [25] have used grey box specifications

for verification of methods that make mandatory calls to other dynamically-dispatched methods. Rajan

et al. have used grey box specification to enable expressive assertions about web-services [23]. Com-

pared to these ideas, our work is the first to consider grey box specification as a mechanism to enable

modular reasoning about code that announces events and handles events, which is a common idiom of

AO and II languages.

www.manaraa.com

38

CHAPTER 7. Soundness of Reasoning

To reason about a method’s body (e) containing announce and invoke expressions, we use the

translation algorithm shown in Figure 3.4 to generate a simulating specification expression (se) (see

Chapter 3). We claim that the method body expression e is a Hoare logic-based refinement of generated

simulating specification expression se [25]. In other words, if starting with a precondition state φp the

specification expression se implies the postcondition state φq, then starting with the same precondition

state φp and by running e, we will reach the postcondition state φq. This condition is formalized in the

definition below.

Definition 1 (Hoare Logic Refinement) A specification expression se is said to be Hoare-logic-refined

by expression e, expressed as se - e, if and only if for all predicates over program states φp and φq,

φp{se}φq ⇒ φp{e}φq.

To prove our claim, we rely on Shaner et al.’s work on reasoning about object-oriented programs

that contain specification expressions [25]. This work proves that an object-oriented program expres-

sion eoo is a Hoare-logic refinement of an object-oriented specification expression seoo, if eoo’s struc-

ture matches seoo’s structure and for every specification expression spec in seoo there is a corresponding

refining expression in eoo that claims, and is verified to, refine spec according to Hoare logic. We

incorporate their result as the lemma below.

Lemma 1 (Shaner-Leavens-Naumann Soundness) Let seoo and eoo be specification and program ex-

pressions and let seoo v eoo, as defined in Figure 3.2, then for all predicates over program states φp

and φq, φp{seoo}φq ⇒ φp{eoo}φq.

But Shaner et al. only prove their results for object-oriented expressions (meaning the expressions

in their paper [25]). To apply these results to reasoning about Ptolemy programs, we must reduce

www.manaraa.com

39

both Ptolemy-specific specification expressions and program expressions to object-oriented expressions

(from [25]). Below we give some sub-results along those lines.

Lemma 2 shows that the translation algorithm (Figure 3.4) produces object-oriented (OO) speci-

fication expressions whereas lemma 3 shows that the substitution algorithm, of Figure 7.3, produces

OO program expressions. The translation algorithm replaces invoke expressions by event type con-

tract, whereas the substitution algorithm replaces invoke expressions by the body of the next applicable

handler in the chain of handlers to simulate event announcement.

Lemma 2 (Translation Produces Object-Oriented Specification Expressions) Let sept be an expression

which may contain Ptolemy-specific expressions and let seoo be the result of the application of applying

the translation algorithm shown in Figure 3.4 to sept, i.e. seoo = Tr(sept ,skip,⊥). Then seoo is an

object-oriented specification expression.

The proof of this lemma is trivial and is done by cases on the translation algorithm.

In previous work, Rajan and Leavens [20] have developed a semantics of Ptolemy programs where

Ptolemy-specific expressions are natively supported. For the purpose of soundness proof here, con-

sider an alternative version of operational semantics as shown in Figure 7.1. In Ptolemy’s alternative

semantics, execution of announce and register expressions result in the execution of program expres-

sions which are the result of application of substitution algorithm to announce and register expressions

respectively. The substitution algorithm replaces invoke expressions with the body of the next handler

in the chain of handlers, thus rules for invoke expressions originally found in Ptolemy’s operational

semantics [19] are not needed anymore. Ptolemy’s original semantics uses a list of active objects A to

keep track of registered observer objects, in alternative semantics presented here a constant memory

location locA in the store, which points to an object which stores list of active objects. The (REFINING)

rule, along with (EVALBODY) and (EVALPOST), make sure that a refining expression truly refines the

implementation it hides and claims to refine. Aside from the changes described here, the rest of the

Ptolemy’s operational semantics remains the same as originally proposed in [19].

The alternative operational semantics along with lemma 3 pave the way to conclude that substi-

tution algorithm applied to announce expressions produces a program expression which simulates the

www.manaraa.com

40

Evaluation relation: ↪→: Γ→ Γ

(REGISTER)
e′ = Subst(register(e),skip,⊥,null)

〈register(e), J, S〉 ↪→
〈
e′, J, S

〉
(ANNOUNCE)
e′ = Subst(announce p (ē){e},skip,⊥,null)

〈announce p (ē){e}, J, S〉 ↪→
〈
e′, J, S

〉
(REFINING)

n 6= 0〈
E[refining requires n ensures e{e′}], J, S

〉
↪→

〈
E[evalbody e′ e], J, S

〉
(EVALBODY)

ρ = envOf (ν) Π = tenvOf (ν)
ρ = envOf (ν) t = Π(v) ρ′ = Π∪−{result : v} Π′ = Π∪−{result : var t} ν′ = lexframe ρ′Π′

〈E[evalbody v e], ν + J, S〉 ↪→
〈
E[under evalpost ve], ν′ + ν + J, S

〉
(EVALPOST)

n 6= 0

〈E[evalpost v n], J, S〉 ↪→ 〈E[v], J, S〉

(UNDER)
〈E[under v], ν + J, S〉 ↪→

〈E[v], J, S〉

Figure 7.1 Alternative operational semantics of Ptolemy[20]

behavior of event announcement. Lemma 3 shows that Ptolemy-specific program expressions are re-

duced to object-oriented expressions using the substitution algorithm.

Lemma 3 (Substitution Produces Object-Oriented Program Expressions) Let locA be a constant mem-

ory location in store which points to the list of active objects. Let ept be a program expression which

may contain Ptolemy-specific expressions and let eoo be the result of the application of the substitution

algorithm shown in Figure 7.3 to ept, i.e. eoo = Subst(ept ,skip,⊥,null). Then expression eoo is

an object-oriented program expression.

Proof of this lemma is again trivial and could easily be carried out by case analysis like lemma 2.

7.1 Substitution Algorithm

The substitution and translation algorithms are similar on one hand, in the sense that they both

replace announce and invoke expressions, on the other hand, they are different as substitution algorithm

produces a program expression by replacing announce and invoke expressions, whereas translation

algorithm results in a specification expression. The translation algorithm replaces announce and invoke

expressions with either the event type’s contract or the event body, depending on the existence of

applicable handlers. The substitution algorithm replaces those expressions with either body of the next

handler or event body, again based on the existence of applicable handlers. Subst(e, be , p, loch) is the

application of substitution algorithm to program expression e, with event p announced and event body

www.manaraa.com

41

be. Instead of list of active objects A in Ptolemy’s original semantics, the substitution algorithm uses

a constant memory location locA. Location locA points to an object of class ActiveList, which is

responsible for tracking the list of receiver objects for applicable handlers.

Most cases of substitution algorithm Subst are straightforward; like those of the translation algo-

rithm, they recursively apply Subst to each subexpression and compose the results. Figure 7.3 shows

how to do that. For Ptolemy-specific expressions, the rule for refining spec{e} basically applies

the substitution algorithm to the subexpression e. The rule for register(e), first applies the sub-

stitution algorithm to the subexpression e and then adds it to the list of the applicable handlers. The

most interesting cases are those for the invoke and announce expressions. In the substitution of these

expressions specially for invoke expression, the assumption is that the contract for event type p is of the

form requires spp assumes {sep} ensures sp′p. Consequently in the substitution of announce

expression the contract for event p′ will be like requires spp′ assumes {sep′} ensures sp′p′ .

In both cases conditional if expressions are produced as the body of a refining expression. The

refining expression claims to refine the black box behavioral specification spec of the event type p. The

refinement of the specification expression by the body of a refining expression is taken care of by run

time assertion checking, as discussed in Section 3.4.5.

Subst(invoke(e), be , p, loch) produces a conditional if expression which checks for the number

of applicable handlers. In its true branch, the conditional expression, contains a sequence of two expres-

sions: substitution of parameter expression e and substitution of the event body be, with the assumption

that there are no more applicable handlers. Likewise, the false branch of the conditional contains a

sequence of two expressions: result of the substitution of parameter expression e and result of the sub-

stitution of the body of the next applicable handler. The assumption of this branch is the existence of

more applicable handlers. Compare this to the translation of invoke expression in Section 3.4.3.

In case of an announce expression announce p′ (ē) {e}, the result of substitution is again a condi-

tional if expression checking for the number of applicable handlers. The true branch of the conditional

contains a sequence of two expressions: substitution of parameter expressions ē and substitution of the

event body e. The assumption in this branch is that there are no more applicable handlers. The false

branch of the conditional contains a sequence of two expressions as well: result of the substitution of

www.manaraa.com

42

parameter expression ē and result of the substitution of the body of the next applicable handler. Readers

are encouraged to compare this to the translation of announce expression in Section 3.4.3.

Figure 7.4 shows auxiliary functions used in the substitution algorithm. Function suc(loch , p)

returns the body of the next handler of event p using the location loch which points to the list of

applicable handlers for event p. The function gets the location of the first handler of event p by calling

method getF irst() and performs a standard β-reduction on the handler method’s body. α-renaming

takes care of name clashes, if any. Auxiliary function findHandler(c, p, CT) returns the handler for

event p in class c where CT is a list of program declarations. Function eventsOf(CT, loc) returns a

list of events that object loc observes.

1 class ActiveList {

2 Hashtable hash;

3 LinkedList handlers(Event p){

4 LinkedList hList = null;

5 hList = (LinkedList)hash.get(p); hList

6 }

7 void add(Object o, Event p){

8 LinkedList hList = null;

9 hList = (LinkedList)hash.get(p);

10 if(hList != null)

11 hList.add(o)

12 else{

13 hList = new LinkedList();

14 hList.add(o);

15 hash.put(p, hList)

16 }

17 }

18 void add(Object o, LinkedList evs){

19 Event p = null;

20 int size = evs.size();

21 for(int i=0 ;i<size; i++){

22 p = (Event)evs.remove(i);

23 add(o,p)

24 }

25 }

26 }

27 class HashTable {…}

28 class LinkedList {…}

29 class Event {…}

Figure 7.2 Classes to simulate list of active objets

To implement the substitution algorithm we assume the existence of some pre-defined classes like

ActiveList as shown in Figure 7.2. ActiveList keeps track of the list of active objects per event

type. Handlers of each specific event are stored in a LinkedList. Constant location locA points to an

object of type ActiveList. Method add(Object o, LinkedList evs) in ActiveList

www.manaraa.com

43

adds object o as the observer for all events in the list evs. Classes Hashtable and LinkedList

are the same as classes Hashtable and LinkedList in Java. Class LinkedList has an extra

method tail which returns the tail of the list.

If be: event body, p and p′: event types
t var context variables for p and t′ var′ context variables for p′

translucid contract for p is: requires spp assumes {sep} ensures sp′p
translucid contract for p′ is: requires spp′ assumes {sep′} ensures sp′

p′

locA: Constant location for list of active objects
loch: Location for the list of handlers of event p

Then Subst(e, be , p, loch) =
Cases of e Result Side Condtions
n, new c(), var ,null e
e.f e′.f if e′ = Subst(e, be , p, loch)
e.m(ē) e′.m(ē′) if e′ = Subst(e, be , p, loch),

ē′ = Subst(ē, be , p, loch)
e0.f = e1 e′0.f = e′1 if e′0 = Subst(e0 , be , p, loch),

e′1 = Subst(e1 , be , p, loch)
if(e){e0} else{e1} if(e′){e′0}else{e′1} if e′ = Subst(e, be , p, loch),

e′0 = Subst(e0 , be , p, loch),
e′1 = Subst(e1 , be , p, loch)

while(e) {e0} while(e′){e′0} if e′ = Subst(e, be , p, loch),
e′0 = Subst(e0 , be , p, loch)

cast c e cast c e′ if e′ = Subst(e, be , p, loch)
e0; e1 e′0; e′1 if e′0 = Subst(e0 , be , p, loch),

e′1 = Subst(e1 , be , p, loch)
t var =
e0; e1

t var = e′0; e′1 if e′0 = Subst(e0 , be , p, loch),
e′1 = Subst(e1 , be , p, loch)

refining spec {e} refining spec {e′} if e′ = Subst(e, be , p, loch)
register(e) locA.add(e′, evs) if e′ = Subst(e, be , p, loch),

evs = eventsOf(CT, e′)
invoke(e) refining spec {

if(k == 0){e′; be}
else{e′; e′′}
}

if loch = locA.handlers(p),
k = loch.size(),
spec = requires spp ensures sp′p,
e′ = Subst(e, be , p, loch),
loctailh = loch.tail(),
e′′ = Subst(suc(loch , p), be , p, loctail

h)
announce p′ (ē) {e} refining spec{

if(k′ == 0){e′; e′}
else{t̄′ var′ = ē′; e′′}
}

if loch′ = locA.handlers(p
′),

k′ = loch′ .size(),
spec = requires spp′ ensures sp

′
p′ ,

ē′ = Subst(ē, be , p, loch),
e′ = Subst(e, be , p′, loch),
loctailh′ = loch′ .tail(),
e′′ = Subst(suc(loch′ , p), e′, p′, loctail

h′)

Figure 7.3 Substitution algorithm

7.2 Proof of Soundness

To prove the soundness of our reasoning approach, we have proved the translation algorithm sound,

i.e., that the specification expression produced by translation algorithm used for reasoning is refined by

www.manaraa.com

44

suc(loch , p) =

eβ

if loch 6= null,
where loc = loch.getF irst(),

[c.F]= S(loc),
t h(thunk t′ var0, t̄ var){eh} =

findHandler(c, p, CT),
eβ = eh[this/loc]

null if loch == null

Figure 7.4 Auxiliary functions of substitution algorithm

the program expression produced by substitution algorithm. Theorem 1 formalizes this.

To reason about a method which may announce an event, translation algorithm is applied to the

method body, ept, which may include Ptolemy-specific expressions and the result specification expres-

sion seoo is used to reason about the method. Lemma 2 assures seoo is an OO specification expression

and therefore can be used for reasoning purposes based on Shaner et al.’s approach [25] as stated by

lemma 1. This is possible only, if there is a guarantee that seoo is specifying the runtime behavior of the

method. The substitution algorithm along with the alternative operational semantics given in Figure 7.1

simulates the original Ptolemy’s operational semantics for event announcement. Lemma 3 makes sure

that the result of the application of substitution algorithm to ept is an OO program expression, eoo.

Finally theorem 1 guarantees that seoo is stating the behavior of eoo, i.e seoo - eoo, definition 1.

Theorem 1 (Refinement Theorem) Let program expression e be the body of a method m and se′ =

Tr(e,skip,⊥) be the translation of e. Let e′ = Subst(e,skip,⊥,null) be the substitution of e.

Then: se′ - e′.

Proof: The proof is by induction on the cases of expression e. For each case we prove se′ v e′ as

defined in Figure 3.2 and then conclude se′ - e′ based on lemma 1 and definition 1. Proof given here

is based on the cases of e where e is a non-specification expression. Thus specification expressions

next , old (se), either {se} or {se} , requires sp ensures sp are not considered in the

proof.

• e ∈ {n, var , null, new c()}, this is vacuously true because se′ = e and e′ = e and any

expression is refined by itself, i.e, e v e. Therefore se′ v e′ which in turn implies se′ - e′ based

on lemma 1 and definition 1.

www.manaraa.com

45

• e = e.m(ē), where se′ = Tr(e.m(ē),skip,⊥) and e′ = Subst(e.m(ē),skip,⊥,null).

Based on the induction hypothesis a subexpression in se′ is refined by its corresponding subex-

pression in e′. And based on the definition of the translation and substitution algorithms it is easy

to see that se′ and e′ are structurally similar. Therefore se′ v e′.

• For e ∈ {e.f, e.fe = e, if(e){e} else{e}, cast c e,

e; e, while(e){e}, t var = e; e}, the proof is similar to the proof for method call case of

e = e.m(ē).

• e = refining spec{e}, where

se′ = spec and e′ = refining spec{Subst(e,skip,⊥,null)}. Refining expression e′

is refining specification expression spec which is the same as se′.

• e = register(e), based on the induction hypothesis a subexpression in se′ is refined by its

corresponding subexpression in e′. As it can be seen the substitution of register expression is

manipulating the list of active objects through locA. An Unrolling strategy in the specification

expression generated by translation algorithm takes care of different number of handlers.

• e = invoke(e), again induction hypothesis assures a subexpression in se′ is refined by its

corresponding subexpression in e′. Also recall that each handler method refines its event type

specification which means refinement of sep by the body of the next handler suc(loch , p). Struc-

tural similarity of se′ and e′ could easily be seen in Figure 7.5. Translation and substitution of

invoke and announce expressions is shown in this figure. Refinement rules in Figure 3.2 assure

either-or block on translation side for invoke expression in Figure 7.5 is refined by if-else block

on substitution side.

• e = announce p′(se){se}. Based on the induction hypothesis a subexpression in se′ is refined

by its counterpart subexpression in e′. Structural similarity of se′ and e′ could easily be seen in

Figure 7.5.

www.manaraa.com

46

Tr(invoke(se), be , p) Subst(invoke(e), be , p,null)

refining spec{
either {se′; be}
or {se′; se′′}
}
where :
se′ = Tr(se, be , p) and
se′′ = Tr(sep , be , p)
spec =requires spp ensures sp′p

refining spec{
if(k == 0){e′; be}
else{e′; e′′}
}
where :
loch = locA.handlers(p) and
k = loch.size() and
spec = requires spp ensures sp′p
e′ = Subst(e, be , p, loch) and
loctailh = loch.tail() and
e′′ = Subst(suc(loch , p), be , p, loctail

h)

Tr(announce p′(se){se}, be , p) Subst(announce p′(ē){e}, be , p,null)

refining spec{
either {se′; se′}
or {t′ var′ = se′ ; se′′}
}
where :
se′ = Tr(se, be , p) and
se′ = Tr(se, be , p′) and
se′′ = Tr(sep′ , se′, p′)
spec =requires spp′ ensures sp′

p′

refining spec{
if(k′ == 0){e′; e′}
else{t̄′ var′ = ē′; e′′}
}
where :
loch′ = locA.handlers(p

′) and
k′ = loch′ .size() and
spec = requires spp′ ensures sp

′
p′

ē′ = Subst(ē, be , p, loch) and
e′ = Subst(e, be , p′, loch) and
loctailh′ = loch′ .tail() and
e′′ = Subst(suc(loch′ , p), e′, p′, loctail

h′)

Figure 7.5 Structural similarity of translation and substitution of announce and
invoke expressions

Proving theorem 1 means our proposed reasoning approach is sound. In other words statically com-

puted translation of a Ptolemy expression containing announce and invoke expressions, is an object-

oriented specification expression which could be used for reasoning purposes without being dependent

on runtime configuration of the system, i.e. number of the handlers and their order of execution.

www.manaraa.com

47

CHAPTER 8. Conclusion and Future Work

We showed how to modularly specify and verify Ptolemy programs that use dynamically announced

events and handlers, which is similar to AspectJ’s pointcuts and dynamic advice.

First, Ptolemy [19] provides a notion of event type declarations. Event announcement names an

event type, and so code announcing an event can use the translucid contracts given in the event type

declaration. Similarly, handlers are statically bound to event types in binding declarations, and this

allows binding verification to also modularly refer to the event type’s translucid contract. As the in-

terface between event announcements and handlers, event type declarations are thus a good place to

write translucid contracts. We also demonstrated the applicability of our techniques to other type of AO

interfaces [1, 9, 13, 27, 28]. Second, Ptolemy’s explicit announcement solves the problem of frequent

join point shadows, since one only has to deal with handlers where events are explicitly announced.

Finally, and most importantly, using grey box specifications as part of our translucid contracts, and

using structural refinement in verification solves the problem of reasoning about control effects of han-

dlers. In essence, the grey box specification exposes all the interesting control effects of handlers and

structural refinement ensures that correct handler implementations are limited to the specified control

effects. We argued that black box behavioral contracts are insufficient for reasoning about such con-

trol flow effects, but showed how our translucid specifications were adequate to specify a wide variety

of such control effects.We have added translucid contracts to a Ptolemy compiler that verifies handler

refinement and inserts runtime assertion checking code [18].

Adding translucid contracts to other AO compilers, integrating our ideas with the rich specification

features of JML, and working out larger examples to find out more of the practical use cases of translu-

cid contracts are some directions for future work. Another direction is to use translucid contracts to

reason about data effects of subject-observer interaction patterns.

www.manaraa.com

48

BIBLIOGRAPHY

[1] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP ’05.

[2] M. Bagherzadeh, H. Rajan, and G. T. Leavens. Translucid contracts for aspect-oriented interfaces.

In FOAL ’10.

[3] L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic verification of publish-subscribe

architectures. In ICSE ’07.

[4] M. Barnett and W. Schulte. Runtime verification of .NET contracts. Journal of Systems and

Software, 65(3), 2003.

[5] M. Büchi and W. Weck. The greybox approach: When blackbox specifications hide too much.

Technical Report 297, Turku Center for Computer Science, August 1999.

[6] C. Clifton and G. T. Leavens. MiniMAO1: Investigating the semantics of proceed. SCP ’06,

63(3).

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static

checking for Java. In PLDI ’02.

[8] D. Garlan, S. Jha, D. Notkin, and J. Dingel. Reasoning about implicit invocation. In FSE ’98.

[9] K. J. Hoffman and P. Eugster. Bridging Java and AspectJ through explicit join points. In PPPJ

’07.

[10] S. Katz. Diagnosis of harmful aspects using regression verification. In FOAL ’04.

[11] R. Khatchadourian, J. Dovland, and N. Soundarajan. Enforcing behavioral constraints in evolving

aspect-oriented programs. In FOAL ’08.

www.manaraa.com

49

[12] R. Khatchadourian and N. Soundarajan. Rely-guarantee approach to reasoning about ao programs.

In SPLAT ’07.

[13] G. Kiczales and M. Mezini. Aspect-oriented programming and modular reasoning. In ICSE ’05,

pages 49–58.

[14] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect advice modularly. In FSE ’04.

[15] J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus. Sci.

Com. Program., 9(3), 1987.

[16] N. Ongkingco et al.. Adding Open Modules to AspectJ. In AOSD ’06.

[17] B. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice: Disciplined advice with explicit

effects. In AOSD ’10.

[18] Ptolemy with Translucid Contracts. http://www.cs.iastate.edu/~ptolemy/

contract/.

[19] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified, typed events. In ECOOP ’08.

[20] H. Rajan and G. T. Leavens. Quantified, typed events for improved separation of concerns. Tech-

nical Report 07-14, Iowa State University, Department of Computer Science, July 2007.

[21] H. Rajan and K. J. Sullivan. Classpects: unifying aspect- and object-oriented language design. In

ICSE ’05.

[22] H. Rajan and K. J. Sullivan. Unifying aspect- and object-oriented design. TOSEM ’08.

[23] H. Rajan, J. Tao, S. M. Shaner, and G. T. Leavens. Tisa: A language design and modular verifi-

cation technique for temporal policies in web services. In ESOP ’09.

[24] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-oriented

programs. In FSE’04.

[25] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular verification of higher-order methods

with mandatory calls specified by model programs. In OOPSLA ’07.

www.manaraa.com

50

[26] T. Skotiniotis and D. H. Lorenz. Cona: Aspects for contracts and contracts for aspects. In

OOPSLA ’04.

[27] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Types and modularity for implicit invocation

with implicit announcement. TOSEM ’10, 20(1).

[28] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle, and N. Tewari. Modular

aspect-oriented design with XPIs. TOSEM ’09, 20(2).

[29] B. Tyler and N. Soundarajan. Black-box testing of grey-box behavior. In FATES ’03, 1–14.

[30] H. Wasserman and M. Blum. Software reliability via run-time result-checking. J. ACM,

44(6):826–849, 1997.

[31] J. Zhao and M. Rinard. Pipa: A behavioral interface specification language for AspectJ. In FASE

’03.

	2011
	Translucid contracts: Expressive specification and modular verification of aspect oriented interfaces
	Mehdi Bagherzadeh
	Recommended Citation

	tmp.1335528368.pdf.H_kPx

